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Let Y/ln
� be a subspace of codimension two and let P(ln

� , Y ) denote the set of
all linear projections from ln

� onto Y. A complete characterization of Y for which
there exists Po # P(ln

� , Y ) such that &Id&Po&=1 will be given. Also an estimate
from below of the constant

*I (Y, ln
�)=inf [&Id&P&: P # P(ln

� , Y )]

as well as the formulas for cominimal projections in some particular cases will be
presented. � 1999 Academic Press

1. INTRODUCTION

Let X be a normed space and let Y/X be a linear subspace of X.
A bounded linear operator P: X � Y is called a projection if Py= y for
any y # Y. Denote by P(X, Y) the set of all projections from X onto Y.
A projection P0 is called cominimal iff

&Id&P0&=*I (Y, X )=inf [&Id&P&: P # P(X, Y )]. (1.1)

The significance of this notion can be illustrated by the following well
known inequality:

(1+&P&) dist(x, Y )�&Id&P& dist(x, Y)

�&(Id&P)(x)&�dist(x, Y )

for every x # X"Y and P # P(X, Y ).
This means that if &P& or &Id&P& is small then Px is a ``good'' linear

replacement of any x # X in Y. It is easily seen that

&Id&P&�1 for every P # P(X, Y ).
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It is also clear that if P0 is a cominimal projection then

&Id&P0&=dist(Id, P(X, Y )).

For more information concerning minimal and cominimal projections the
reader is referred to [CL], [CM1], [CM2], [CP], [FMW], [Fr], [KT].
Also a more complete list of references can be found in [LO]. It is easy to
prove that if Y is a hyperplane in X then *I (Y, X )=1. If codim Y>1 the
formulas for cominimal projections as well as the value of the constant
*I (Y, X ) are not known apart from some trivial cases.

The aim of this paper is to investigate the constant *I (Y, ln
�) where ln

�

denotes the space Rn with the maximum norm and Y is a subspace of ln
�

of codimension two. We present a complete characterization of subspaces
Y for which *I (Y, X )=1 (Theorem 3.1). If *I (Y, X )>1, an estimate from
below of this constant will be shown (Theorem 3.5). Also a formula
for cominimal projections as well as the exact value of *I (Y, X ) will be
determined in some particular cases (Theorem 3.2, Example 3.3 and
Theorem 3.9).

Now let us introduce some notions and results which will be of use later.
By S(X ) we denote the unit sphere in a normed space X and by ext(X) the
set of its extreme points. The symbol L(X, Y ) means the space of all linear,
continuous mappings from X to Y. If Y is a linear subspace of X we write

LY=[L # L(X, Y): L|Y=0].

It is obvious that

*I (Y, X )=dist(Id&P, LY)

for every P # P(X, Y ).
If X=ln

� the symbol Tij , i, j # [1, 2, ..., n] stands for a transposition

Tij (x1 , ..., xi , ..., xj , ..., xn)=(x1 , ..., xj , ..., xi , ..., xn), (1.2)

where x=(x1 , ..., xn) # Rn. Now let X be a normed space. For any x # X set

E(x)=[ f # ext(X*): f (x)=&x&].

Definition 1.1 [SW, Def. 5.1]. Let X be a real normed space,
x # X"[0] and let Y/X be an n-dimensional linear subspace. A set
I=[g1, ..., gk]/ext(X*) is called an I-set iff there exist positive numbers
*1, ..., *k such that

:
k

i=1

*igi| Y=0.
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If moreover I/E(x) the I is called an I-set with respect to x. An I-set I is
said to be minimal, if there is no proper subset of I which forms I-set. A
minimal I-set I is called regular iff k=n+1 (by the Caratheodory theorem
n+1 is the largest possible number (see [Ch])).

The importance of regular I-set is illustrated by

Theorem 1.2 [SW, Th. 5.8]. Let X be a real normed space. Let
x # X"Y, y # Y. If there exists a regular I-set for x& y then y is a strongly
unique best approximation to x in Y.

From [RS] it immediately follows

Theorem 1.3 [RS]. Let X be a finite dimensional normed space. Then

ext(L*(X ))=ext(X*)�ext(X),

where (x*�x)(L)=x*(Lx) for x # X, x* # X* and L # L(X, X ).

Lemma 1.4 (see, e.g., [BC]). Assume X is a normed space and let Y/X
be a subspace of codimension k, Y=�k

i=1 ker gi where gi # X* are linearly
independent. Let P # P(X, Y ). Then there exist y1, ..., yk # X satisfying

gi ( y j)=$ i, j , i, j=1, ..., k (1.3)

such that

x&Px= :
k

i=1

g i (x) yi for x # X. (1.4)

On the other hand, if y1, ..., yk # Y satisfy (1.3) then the operator
P=Id&�k

i=1 gi ( } ) yi belongs to P(X, Y ).

Lemma 1.5. Let X=ln
� and let Y=�k

i=1 ker gi, k�n, where gi # S(X*)
are linearly independent. Let P # P(X, Y ), P=Id&�k

i=1 gi ( } ) yi where
yi # Rn, i # [1, ..., k]. Then

&Id&P&= max
i # [1, ..., n] \ :

n

s=1 } :
k

j=1

g j
s y j

i }+ (1.5)

Proof. Let x # S(X ). Then

&(Id&P)(x)&= max
i # [1, ..., n] } :

k

j=1

g j (x) y j
i }� max

i # [1, ..., n] \ :
n

s=1
} :

k

j=1

g j
s y j

i }+ .
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Setting x=(x1 , x2 , ..., xn) such that

xs={
sgn :

k

j=1

g j
s y j

i

0

if :
k

j=1

g j
s y j

i {0

if :
k

j=1

g j
s y j

i =0

for s=[1, 2, ..., n], we get the result. K

Lemma 1.6 (see, e.g., [LO, Prop. II.7.1, p. 82]). Let Y1 , Y2 be two
linear subspaces of a normed space X. Suppose that there is a linear isometry
T of X into itself such that T(Y1)=Y2 . Then *I (Y1 , X )=*I (Y2 , X ).

Proof. Let us define a mapping 8 from P(X, Y1) onto P(X, Y2) by

8(P)=T b P b T&1.

Since Id commutes with T and T&1 it is easy to see that
&Id&8(P)&=&Id&P& for any P # P(X, Y1) which completes the proof.

Definition 1.7. Let X be a normed space and Y1 , Y2 be two linear
subspaces of X. It is said that Y1 is equivalent up to isometry to Y2 iff there
is a linear isometry T of X into itself such that T(Y1)=Y2 .

2. TECHNICAL LEMMAS

In this section, unless otherwise stated, we assume that n # N, n�3.

Lemma 2.1 (see [Le, Lemma 2.1]). Let Y/ln
� be a subspace of

codimension two, Y=ker g1 & ker g2 where g1, g2 # S(ln
1) are linearly inde-

pendent functionals. Then there is a linear subspace Y� /ln
� equivalent up to

isometry to Y such that Y� =ker g~ 1 & ker g~ 2, where g~ 1, g~ 2 # S(ln
1) are of the

form g~ 1=(g~ 1
1 , 0, g~ 1

3 , ..., g~ 1
n), g~ 2=(0, g~ 2

2 , g~ 2
3 , ..., g~ 2

n), g~ 1
1 , g~ 2

2>0, g~ 1
j , g~ 2

j �0 for
j # [3, ..., n].

Let g1, g2 # S(ln
1) be linearly independent functionals such that

g1=(g1
1 , 0, g1

3 , ..., g1
n) (2.1)

g2=(0, g2
2 , g2

3 , ..., g2
n), (2.2)

g1
1 , g2

2>0, g1
j , g2

j �0 and g1
j + g2

j >0 for j # [1, ..., n]. (2.3)
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Hence Y=ker g1 & ker g2 is a subspace of codimension two in Rn. Let
y1, y2 # Rn, satisfy (1.3) and let P0 # P(ln

� , Y ) be the projection determined
by y1, y2 (see Lemma 1.4), which means

(Id&P0)(x)= g1(x) y1+ g2(x) y2.

For s # [2, ..., n] we put

uk=g1
1 :

n

j=k+1

g2
j

vk=g2
2 :

k

i=3

g1
i ,

where by definition v2=un=0.
Now some useful properties of the functionals g1 and g2 will be shown.

Lemma 2.2. There is only one number s # [3, ..., n] satisfying two
inequalities:

ux �vs (2.4)

vs&1<us&1 . (2.5)

Proof. The sequence (uk)k # [2, ..., n] is decreasing, while the sequence
(vk)k # [2, ..., n] is increasing. If neither u3�v3 nor vn&1<un&1 , the number

s=min[k: uk�vk] # [4, ..., n&1]

clearly satisfies the lemma. It follows easily that if u3�v3 then un&1<vn&1

and we get s=3. Analogously if vn&1<un&1 then v3<u3 and s=n. K

Lemma 2.3. There is only one number s # [3, ..., n] satisfying two
inequalities:

us <vs (2.6)

vs&1�us&1 . (2.7)

Proof. If neither u3<v3 nor vn&1�un&1 , the number

s=min[k: uk<vk] # [4, ..., n&1]

satisfies the lemma. If u3<v3 then un&1<vn&1 and s=3, if vn&1�un&1

then v3<u3 and s=n. K

The only s constructed in Lemma 2.2 will be denoted by sa and the only
s constructed in Lemma 2.3 by sb .
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Lemma 2.4. There are two possibilities: (sa=sb) or (sa=sb&1).

Proof. By definition sa and sb we ge that sa�sb . If in (2.4) we have
usa

<vsa
then sa satisfies Lemma 2.3 and we have sa=sb . If in (2.4) we have

usa
=vsa

then it is easy to check that usa+1<vsa+1 and sb=sa+1 satisfies
Lemma 2.3. K

Let s # [3, ..., n] and g1, g2 # S(ln
1) be linearly independent functionals

satisfying (2.1)�(2.3). Suppose

det _g1
i

g2
i

g1
j

g2
j &{0 (2.8)

for every i, j # [1, 2, ..., n], i{ j, then we set

I={i # [3, ..., n]:
g1

s

g2
s

>
g1

i

g2
i = ,

J={j # [3, ..., n]:
g1

s

g2
s

<
g1

j

g2
j = .

Theorem 2.5. Let

,1=e1 � (1, &1, 1, ..., 1)

,2=e2 � (&1, 1, 1, ..., 1)

,s=es � (1, 1, ..., 1)

, i
1=ei � (1, 1, ..., 1)

, i
2=ei � (&1, 1, 1, ..., 1)

, j
1=ej � (1, 1, ..., 1)

, j
2=ej � (1, &1, 1, ..., 1)

for i # I, j # J, where ek(x)=xk for x # Rn and k # [1, ..., n].
Then [,1, ,2,s, , i

1 , , i
2 , j

1 , , j
2], (i # I, j # J) is a minimal, regular I-set.

Proof. Consider the following equation:

*1,1|LY
+*2,2|LY

+*s,s| LY
+ :

i # I

(* i
1, i

1 |LY
+* i

2, i
2 | LY

)

+ :
j # J

(* j
1, j

1 |LY
+* j

2, j
2 |LY

)=0 (2.9)

with unknown variables *1, *2, *s, * i
1 , * i

2 , * j
1 , * j

2 , (i # I, j # J). Note that
dim LY=2(n&2) and the mappings [g1( } ) wk, g2( } ) wk, ], k # [3, ..., n]

91COMINIMAL PROJECTIONS IN l n
�



form basis of LY . (Here wk=(&g1
k �g1

1 , &g2
k �g2

2 , 0, ..., 0, 1, 0, ..., 0) # Rn

where 1 is equal to the k-th coordinate.)
Fix *1=1. Taking the value of the both sides of (2.9) on the elements

[g1( } ) ws, g2( } ) ws], we get

{
*s=

g1
s

g1
1

+*2 g2
s

g2
2

(1&2g1
1)

*s=
g1

s

g1
1

(1&2g2
2)+*2 g2

s

g2
2

.
(2.10)

Hence

*2=
g1

s(g2
2)2

g2
s (g1

1)2>0. (2.11)

By (2.10) and (2.11)

*s=
g1

s g2
2

(g1
1)2 [ g2

2(1& g1
1)+ g1

1(1& g2
2)]>0. (2.12)

Now let k # I _ J. Put

ak
1=

g1
k

g1
1

+
g2

k g1
s g2

2

g2
s(g1

1)2 (1&2g1
1)

ak
2=

g1
k

g1
1

(1&2g2
2)+

g2
k g1

s g2
2

g2
s (g1

1)2 .

Taking the value of the both sides of (2.9) on the elements
[g1( } ) wi, g2( } ) wi], for i # I we get

{
* i

1+* i
2(1&2g1

1)=a i
1

* i
1+* i

2=a i
2 .

Applying the Cramer rule we get *i
1=W i

1 �W i, * i
2=W i

2 �W i, where

W i=det _1
1

1&2g1
1

1 &=2g1
1>0

W i
1=det _a i

1

a i
2

1&2g1
1

1 &=2
g1

i

g1
1

[ g1
1(1& g2

2)+ g2
2(1& g1

1)]

W i
2=det _1

1
a i

1

a i
2&=2

g2
i g1

s g2
2

g2
s(g1

1)2 _g2
i &

g1
i g2

s

g1
s & .
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It is obvious that W i
1>0 and * i

1>0. If i # I then W i
2>0 and consequently,

*i
2>0. Taking the value of the both sides of (2.9) on the elements

[g1( } ) w j, g2( } ) w j], for j # J we get

{
* j

1+* j
2=a j

1

* j
1+* j

2(1&2g2
2)=a j

2 .

In the same way we obtain * j
1>0, * j

2>0.
It is easy to check that the above constructed I-set is regular and minimal,

which gives the result. K

3. THE MAIN RESULTS

Theorem 3.1. Let g1, g2, ..., gk # S(ln
1), k�n, be linearly independent

functionals such that g i
j�0 for every i # [1, 2, ..., k], j # [1, 2, ..., n], g i

i>0,
gi

j=0 for every i, j # [1, 2, ..., k], i{ j. Put Y=�k
i=1 ker gi. Let yi # ln

� , and
P0 # P(ln

�) satisfy (1.3) and (1.4).
Then &Id&P0&=1 if and only if for every i{ j supp(g i) & supp(g j)=<,

where

supp(gi)=[k: g i
k {0].

Moreover if g i
j {0 then for every t # [1, ..., k],

yt
j={0 if i{t

1 if i=t.
(3.1)

Proof. Suppose that &Id&Po&=1. Then by (1.5)

1=&Id&Po &�| y1
j + y2

j + } } } + yk
j |

for every j # [1, 2, ..., n]. Since gi # S(ln
1), by (1.3),

y1
j + y2

j + } } } + yk
j =1. (3.2)

Note that by Lemma 1.5, for every i # [1, ..., k] and j # [1, ..., n]

1=&Id&Po&�g1
1 y1

j + } } } + g i&1
i&1 y i&1

j & g i
i y i

j+ g i+1
i+1 y i+1

j + } } }

+ gk
k yk

j + :
n

t=k+1

:
k

i=1

g i
t y i

j .
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By (3.2) and the above inequality, 0� &2g i
i y i

j and consequently

y i
j�0 (3.3)

for i # [1, ..., k] and j # [1, ..., n]. Now let g i
j>0 for some j{i. Then for

t # [1, ..., k], t{i

yt
j =\& :

k: gi
k{0

g i
k y t

k +<g i
j . (3.4)

Consequently, by (3.3), for any t{i y t
j =0. In view of (3.2) y i

j=1, which
proves (3.1). Hence for every i such that g i

j>0, y i
j=1. By (3.1), there is at

most one i # [1, ..., k] with g i
j>0 which proves that supp(gi) & supp(g l)=<

if i{l. Conversely, suppose that supp(gi) & supp(gl)=< for i{l. For
any i # [1, ..., k], j # [1, ..., n] define y i

j=1 if g i
j>0 and y i

j=0 in the
opposite case. Put yi=( y i

l , ..., y i
n). Since supp(g i) & supp(g l)=< for l{i,

gi ( yl)=$i, l . Let Po # P(ln
� , Y ) be the projection determined by y1, ..., yk

(see Lemma 1.4). But Lemma 1.5, &Id&Po&=1, which completes the
proof. K

Now let n�3, s=sa (see Lemma 2.4) and g1, g2 # S(ln
1) be linearly inde-

pendent functionals satisfying (2.1)�(2.3), and (2.8). Suppose additionally
that

g1
3

g2
3

<
g1

4

g2
4

< } } } <
g1

n

g2
n

. (3.5)

Note that if in (2.8) we set i=1 then we have g2
j {0 for j # [3, ..., n], on

the other hand if we set j=2 then g1
i {0 for i # [3, ..., n].

Put Y=ker g1 &ker g2 and xs=(g2
s g1

1+ g1
s g2

2)�(g1
s �n

j=s g2
j + g2

s �s&1
i=3 g1

i ).

Theorem 3.2. If

1+xs�max {g2
3

g1
3

+2g2
2 ;

g1
n

g2
n

+2g1
1= (3.6)

then

ds=
g2

s g1
1+ g1

s g2
2

g2
s g1

1+ g1
s g2

2&2g1
1 g2

2(g1
s �n

j=s g2
j + g2

s �s&1
i=3 g1

i )
=*I (Y, ln

�). (3.7)

Moreover there is a strongly unique (in particular unique) minimal projection.
This projection is determined by the vectors y1, y2 # Rn satisfy (1.3) such that
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y1
k={

0 if k # [3, ..., s&1]

(3.8)

g2
2 �s

i=3 g1
i & g1

1 �n
j=s+1 g2

j

g2
s g1

1+ g1
s g2

2&2g1
1 g2

2(g1
s �n

j=s g2
j + g2

s �s&1
i=3 g1

i )
if k=s

ds if k # [s+1, ..., n]

y2
k={

ds if k # [3, ..., s&1]

(3.9)

g1
1 �n

j=s g2
j & g2

2 �s&1
i=3 g1

i

g2
s g1

1+ g1
s g2

2&2g1
1 g2

2(g1
s �n

j=s g2
j + g2

s �s&1
i=3 g1

i )
if k=s

0 if k # [s+1, ..., n].

Proof. Consider a system of equations

,k(g1( } ) y1+ g2( } ) y2)=ds for k # [1, 2, s]
(3.10)

,k
i (g1 ( } ) y1+ g2( } ) y2)=ds for k # [3, ..., n]"[s], l # [1, 2]

g1( y1)=g2( y2)=1
(3.11)

g1( y2)=g2( y1)=0.

By the definition of ,k, ,k
l (see Theorem 2.5), (3.10), (3.11) can be rewritten

in the form

y1
1+(1&2g2

2) y2
1 =ds (3.12)

(1&2g1
1) y1

2+ y2
2=ds (3.13)

y1
s + y2

s =ds (3.14)

y1
i =0,

y1
j =ds ,

y2
i

y2
j

=ds

=0
for i # I
for j # J.

(3.15)

From this we get:

ds=
g2

s g1
1+ g1

s g2
2

g2
s g1

1+ g1
s g2

2&2g1
1 g2

2(g1
s �n

j=s g2
j + g2

s �s&1
i=3 g1

i )

y1
s =

g2
2 �s

i=3 g1
i & g1

1 �n
j=s+1 g2

j

g2
s g1

1+ g1
s g2

2&2g2
2(g1

s �n
j=s g2

j + g2
s �s&1

i=3 g1
i )

(3.16)

y2
s =

g1
1 �n

j=s g2
j & g2

2 �s&1
i=3 g1

i

g2
s g1

1+ g1
s g2

2&2g1
1 g2

2(g1
s �n

j=s g2
j + g2

s �s&1
i=3 g1

i )
.
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Note that if sa=sb then y1
s >0 and y2

s >0. If sb=sa+1 then y1
s =0 and

y2
s >0. Let P0 # P(ln

� , Y ) be the projection determined by y1 and y2. By
Lemmas 2.2�2.4 and (3.14) we have

,s(Id&P0)=&Id&P0&=ds . (3.17)

By (3.15) it is easy to see that

,k
l (Id&P0)=&Id&P0 &=ds for k # [3, ..., n]"[s], l # [1, 2]. (3.18)

Note that

y2
1= y1

2=&
g1

s �n
j=s g2

j + g2
s �s&1

i=3 g1
i

g2
s g1

1+ g1
s g2

2&2g1
1 g2

2(g1
s �n

j=s g2
j + g2

s �s&1
i=3 g1

i )
.

Hence by (3.12), (3.13) we get

y1
1

& y2
1

=
ds

& y2
1

+1&2g2
2

y2
2

& y1
2

=
ds

& y1
2

+1&2g1
1 .

In view of (3.6) and (3.16)

y1
1

& y2
1

�
g2

3

g1
3

y2
2

& y1
2

�
g1

n

g2
n

,

which by (3.5) gives

,1(Id&P0)=&Id&P0&=ds , (3.19)

,2(Id&P0)=&Id&P0&=ds . (3.20)

Consequently, the functionals ,1, ,2, ,s, , i
1 , , i

2 , , j
1 , , j

2 form a regular I-set,
with respect to Id&P0 .

By Theorem 1.3 ,1, ,2, ,s, , i
1 , , i

2 , , j
1 , , j

2 # ext(L*(ln
�)). From

(3.17)�(3.20) it follows that this I-set is contained in E(Id&P0).
By Theorem 1.2, 0 is the unique best approximation for Id&P0 in LY ,

which means that Id&P0 is the unique minimal projection and we get
(3.7)�(3.9). K

Example 3.3. 1. Let n=3, g1=(1�3, 0, 2�3), g2=(0, 3�4, 1�4) satisfy
(2.1)�(2.3), (2.8), (3.5), Y=ker g1 & ker g2. Then s=3 and y1

1 �& y2
1=3

�g2
3 �g1

3 and y2
2 �& y1

2=23�6�g1
3 �g2

3 which give (3.6).
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By Theorem 3.2 we get d3=7�6 satisfies (3.7) and projection P0 is
cominimal.

2. Put n=4, g1=(1�3, 0, 1�3, 1�3), g2=(0, 1�2, 1�3, 1�6) satisfy
(2.1)�(2.3), (2.8), (3.5), Y=ker g1 & ker g2. Note that s=3 and y1

1 �& y2
1=

5�3�g2
3 �g1

3 , y2
2 �& y1

2=2�g1
4 �g2

4 so we have (3.6), d3=5�4 satisfies (3.7)
and projection P0 is cominimal.

3. Put n=5, g1=(2�3, 0, 1�27, 1�9, 5�27), g2=(0, 3�4, 1�12, 1�9, 1�18)
satisfy (2.1)�(2.3), (2.8), (3.5), Y=ker g1 & ker g2. Now s=4, y1

1 �& y2
1=

71�11�g2
3 �g1

3 , y2
2�y1

2=437�66�g1
5 �g2

5 and d4=153�131 satisfies (3.7), and
projection P0 is cominimal.

4. Let n=7, g1=(95�298, 0, 27�298, 43�298, 27�298, 81�298, 25�298),
g2=(0, 94�200, 21�200, 28�200, 14�200, 34�200, 9�200) satisfy (2.1)�(2.3),
(2.8), (3.5), Y=ker g1 & ker g2. We have s=4, y1

1 �& y2
1 r1.57938�g2

3 �g1
3 ,

y2
2 �& y1

2 r1.888180�g1
7 �g2

7 , d4 r1.24568 satisfies (3.7), and projection P0

is cominimal.

Remark 3.4. Note that if sb=sa+1 then xsb
=xsa

. If we assume s=sb

in Theorem 3.2 then dsa
=dsb

= y1
sb

= y2
sa

and y1
sa

= y2
sb

=0.
If (3.6) is valid and s=sb then by Theorem 3.2 dsb

=*I (Y, ln
�) and we get

the cominimal projection from Theorem 3.2 for s=sa .

Theorem 3.5. Suppose that (3.6) does not hold. Then

1<ds<*I (Y, ln
�).

Proof. Firstly we show that 1<ds . We need only to prove that:

g2
s g1

1+ g1
s g2

2&2g1
1 g2

2 \g1
s :

n

j=s

g2
j + g2

s :
s&1

i=3

g1
i +>0.

Note that

g2
s g1

1+ g1
s g2

2&2g1
1 g2

2 \ g1
s :

n

j=s

g2
j + g2

s :
s&1

i=3

g1
i +

= g2
s g1

1 \1&2g2
2 :

s

i=3

g1
i ++ g1

s g2
2 \1&2g1

1 :
n

j=s+1

g2
j +

= g2
s g1

1 _ g2
2 \1& :

s

i=3

g1
i ++\ :

n

j=s

g2
j & g2

2 :
s&1

i=3

g1
i ++ :

s&1

i=3

g2
i && g1

1 g2
2 g1

s g2
s

+ g1
s g2

2 _ g1
1 \1& :

n

j=s+1

g2
j ++\ :

s

i=3

g1
i & g1

1 :
n

j=s+1

g2
j ++ :

n

j=s+1

g1
j & .
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Note that

&g1
1 g2

2 g1
s g2

s+g1
s g2

2 _g1
1 \1& :

n

j=s+1

g2
j ++\:

s

i=3

g1
i &g1

1 :
n

j=s+1

g2
j ++ :

n

j=s+1

g1
j &

= g1
s g2

2 _ g1
1 \1& :

n

j=s

g2
j ++\ :

s

i=3

g1
i & g1

1 :
n

j=s+1

g2
j ++ :

n

j=s+1

g1
j & .

By Lemma 2.2 we get the result.
The inequality ds<*I (Y, ln

�) follows from Theorem 2.5, (3.17)�(3.20)
and from the fact that if we have a functional F of norm 1 vanishing on LY

then

*I (Y, ln
�)�F(Id&P)

for any P # P(ln
� , Y ). K

Example 3.6. 1. Let n=4, g1=(1�3, 0, 1�3, 1�3), g2=(0, 1�2, 4�10, 1�10)
satisfy (2.1)�(2.3), (2.8), (3.5), Y=ker g1 & ker g2. Now s=3, but y2

2 �& y1
2

=32�15<g1
4 �g2

4 so (3.6) does not hold. We get d3=27�11<*I (Y, l 4
�)

�1.39092.

2. Let n=5, g1=(6�21, 0, 6�21, 5�21, 4�21), g2=(0, 3�17, 7�17, 4�17, 3�17)
satisfy (2.1)�(2.3), (2.8), (3.5), Y=ker g1 & ker g2. Now we have s=4 and
y1

1 �& y2
1=1312�1003<g2

3 �g1
3 so (3.6) does not hold.

We get d4=1547�1311<*I (Y, l5
�)�1.31580.

Remark 3.7. If g1, g2 # S(ln
1) have negative coordinates then by

Lemma 2.1 there exist functionals g~ 1, g~ 2 # S(ln
1) such that (2.1)�(2.3) are

satisfied and Y� =ker g~ 1 & ker g~ 2 is equivalent up to isometry (see Def. 1.7)
to Y=ker g1 & ker g2.

By Lemma 1.6, *I (Y, ln
�)=*I (Y� , ln

�). Moreover, if P� 0 # P(ln
� , Y� ] is a

cominimal projection then P0=A&1 b P� 0 b A # P(ln
� , Y ) is a cominimal

projection onto Y. Here A is a linear isometry from ln
� onto itself such that

A(Y )=Y� . Also the estimate from below presented in Theorem 3.5 is
invariant under linear isometries. Hence by Lemma 2.1, Theorem 3.5 works
for any Y with *I (Y, ln

�)<1. Note that Theorem 3.1 gives a complete
characterization of this case.

Remark 3.8. The formula from Theorem 3.2 and the estimate from
Theorem 3.5 remain true if (2.8) is not satisfied. It follows easily from the
fact that a function

( f, g) � *I (ker ( f ) _ ker (g), ln
�)

is continuous (where f, g # S(ln
1)).
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Theorem 3.9. If n=3 then projection P0 given by (3.8), (3.9) is
cominimal.

Proof. If n=3 then

y1
1

& y2
1

&
g2

3

g1
3

=1&2g2
2+

g2
3 g1

1+ g1
3 g2

2

g1
3(1& g2

2)
= g2

2 \ 1
g1

3

+
1

g2
3

&2+>0,

y2
2

& y1
2

&
g1

3

g2
3

=1&2g1
1+

g1
3 g2

2+ g2
3 g1

1

g2
3(1& g1

1)
= g1

1 \ 1
g1

3

+
1

g2
3

&2+>0,

which gives the result. K

Remark 3.10. If n=3 then

d3=
g2

2 g1
3+ g1

1 g2
3

g2
2 g1

3+ g1
1 g2

3&2g1
1 g2

2 g1
3 g2

3

.

The cominimal projection is determined by the vectors y1, y2 # l 3
� ,

satisfying (1.3) such that

y1
3=

g2
2 g1

3

g2
2 g1

3+ g1
1 g2

3&2g1
1 g2

2 g1
3 g2

3

y2
3=

g1
1 g2

3

g2
2 g1

3+ g1
1 g2

3&2g1
1 g2

2 g1
3 g2

3

.
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